If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=40
We move all terms to the left:
z^2-(40)=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 105-9=2x | | (2×55)/((7+x)+3)=x | | x=(2×55)/((7+x)+3) | | 3x+(1/2)x=56 | | 1/2x+4=43 | | 4y=45-9 | | 31/2x=56 | | 4x+14=186 | | 3=x/5-1 | | -6(8x+10)=3(16x+20) | | (9x-22)=(6x-7) | | -0.65p-4=0.35 | | 5w+18=3w-10 | | 4x+50+2x+60+14x+30=180 | | 5w+2=3w-10 | | 3(x-5)=2x-22 | | y=-1/2*4+5 | | 10x+1=4x+31 | | 66+33+x=180 | | 4x+19=8x-1 | | 84+2x+6+12x=180 | | (e+4)×5=35 | | 7x-6=2-3 | | 4(2f-5)+3f=13 | | 3^(2x)=34 | | 3.14/7=a=4 | | 4y+65=93 | | (11x-3)=7x+3 | | -15–27v=25+7v | | 6c+4=3c-17 | | Y=3x^2+6x+9 | | x+.4=10000 |